Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS One ; 19(4): e0299954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635514

RESUMEN

For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species' response to climate change and rapid land-use changes.


Asunto(s)
Passeriformes , Pájaros Cantores , Humanos , Animales , Femenino , Migración Animal/fisiología , Brasil , Cruzamiento , Estaciones del Año
2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38681672

RESUMEN

The Magellanic sub-Antarctic ecoregion of southern Chile represents one of the last remaining pristine areas on Earth, but there are knowledge gaps concerning the biodiversity and interactions of the regions' flora and fauna. Non-native insect species like Bombus terrestris and Vespula vulgaris are known to have detrimental influence on native populations through competition for resources/nesting habitat, larvae predation, and foreign pathogen introduction. However, their interactions with the native and non-native plants in the region and between introduced species are unknown. This study highlights the importance of further investigations documenting the region's biodiversity, native and non-native species interactions, and local pollinators.

3.
Heliyon ; 10(4): e25542, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380002

RESUMEN

Eight Ribes magellanicum collections from three different places in southern Patagonia were compared for content of different groups of phenolics, antioxidant capacity and inhibition of enzymes related to metabolic syndrome (α-amylase, α-glucosidase and pancreatic lipase). The sample with the highest antioxidant capacity was assessed for glutathione (GSH) synthesis stimulation in human gastric adenocarcinoma (AGS) cells. The chemical profile was determined by high performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS) and the main phenolics were quantified. The samples from Navarino Island and Reserva Nacional Magallanes showed higher content of anthocyanins and caffeoylquinic acid, with better activity towards α-glucosidase and antioxidant capacity. A sample from Omora (Navarino Island), significantly increased intracellular GSH content in AGS cells. Some 70 compounds were identified in the fruit extracts by HPLC-MS/MS. The glucoside and rutinoside from delphinidin and cyanidin and 3-caffeoylquinic acid were the main compounds. Different chemical profiles were found according to the collection places.

4.
Acta bioeth ; 29(2)oct. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1519838
5.
Ecol Evol ; 13(6): e10143, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37351480

RESUMEN

The Magellanic sub-Antarctic Forest is home to the world's southernmost avian community and is the only Southern Hemisphere analogue to Northern Hemisphere temperate forests at this latitude. This region is considered among the few remaining pristine areas of the world, and shifts in environmental conditions are predominantly driven by climate variability. Thus, understanding climate-driven demographic processes is critical for addressing conservation issues in this system under future climate change scenarios. Here, we describe annual survival patterns and their association with climate variables using a 20-year mark-recapture data set of five forest bird species in the Cape Horn Biosphere Reserve. We develop a multispecies hierarchical survival model to jointly explore age-dependent survival probabilities at the community and species levels in a group of five forest passerines. At the community level, we assess the association of migratory behavior and body size with survival, and at the species level, we investigate the influence of local and regional climatic variables on temporal variations of survival. We found a positive effect of precipitation and a negative effect of El Niño Southern Oscillation on juvenile survival in the white-crested Elaenia and a consistent but uncertain negative effect of temperature on survival in juveniles and 80% of adults. We found only a weak association of climate variables with survival across species in the community and no temporal trends in survival for any of the species in either age class, highlighting apparent stability in these high austral latitude forests. Finally, our findings provide an important resource of survival probabilities, a necessary input for assessing potential impacts of global climate change in this unique region of the world.

6.
Geohealth ; 7(4): e2022GH000623, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091293

RESUMEN

Since the mid-20th century, the so-called Great Acceleration (sensu Steffen et al., 2007, https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2) has amplified processes of ecosystem degradation, extinction of biological species, displacement of local peoples, losses of languages, and cultural diversity. These losses are still underperceived by the academic community, and by a global society that is disconnected from biocultural diversity. To reconnect society with biocultural diversity, we integrate temporal and spatial dimensions of seasonal cycles, by combining two conceptual frameworks: ecological calendars and the "3Hs" model of the biocultural ethic (sensu Rozzi, 2012, https://doi.org/10.5840/enviroethics20123414). The latter values the vital links between human and other-than-human co-inhabitants, their life habits (e.g., cultural practices of humans or life cycles of other-than-human species), and the structure and processes of their shared habitats. This integration enhances an understanding of links between cultural practices and the life cycles of biocultural keystone species. As a synthesis, we use the term biocultural calendars to emphasize their co-constitutive nature that result from interactions between dynamic biophysical and cultural processes embedded in specific ecosystems and cultures. These calendars link astronomical, biological, and cultural seasonal cycles that sustain life and enhance the integration of Indigenous and scientific knowledge to confront challenges of climate change faced from local to global scales. To illustrate this integration, we examine cultural practices and socio-environmental changes across four contrasting ethnolinguistic communities in southwestern South America, from southern to northern Chile along a marked climatic gradient to show the broad application of the concept of biocultural calendars.

8.
Sci Rep ; 12(1): 13957, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028531

RESUMEN

We describe a new taxon of terrestrial bird of the genus Aphrastura (rayaditos) inhabiting the Diego Ramírez Archipelago, the southernmost point of the American continent. This archipelago is geographically isolated and lacks terrestrial mammalian predators as well as woody plants, providing a contrasted habitat to the forests inhabited by the other two Aphrastura spp. Individuals of Diego Ramírez differ morphologically from Aphrastura spinicauda, the taxonomic group they were originally attributed to, by their larger beaks, longer tarsi, shorter tails, and larger body mass. These birds move at shorter distances from ground level, and instead of nesting in cavities in trees, they breed in cavities in the ground, reflecting different life-histories. Both taxa are genetically differentiated based on mitochondrial and autosomal markers, with no evidence of current gene flow. Although further research is required to define how far divergence has proceeded along the speciation continuum, we propose A. subantarctica as a new taxonomic unit, given its unique morphological, genetic, and behavioral attributes in a non-forested habitat. The discovery of this endemic passerine highlights the need to monitor and conserve this still-pristine archipelago devoid of exotic species, which is now protected by the recently created Diego Ramírez Islands-Drake Passage Marine Park.


Asunto(s)
Passeriformes , Fitomejoramiento , Animales , Ecosistema , Bosques , Flujo Génico , Humanos , Mamíferos
9.
Allergy ; 77(12): 3498-3512, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35748742

RESUMEN

Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies. In an era of interconnected grand challenges threatening health of all systems at all scales, planetary health provides a framework for cross-sectoral collaboration and unified systems approaches to solutions. The field of allergy is at the forefront of these efforts. Allergic conditions are a sentinel measure of environmental impact on human health in early life-illuminating how ecological changes affect immune development and predispose to a wider range of inflammatory noncommunicable diseases (NCDs). This shows how adverse macroscale ecology in the Anthropocene penetrates to the molecular level of personal and microscale ecology, including the microbial systems at the foundations of all ecosystems. It provides the basis for more integrated efforts to address widespread environmental degradation and adverse effects of maladaptive urbanization, food systems, lifestyle behaviors, and socioeconomic disadvantage. Nature-based solutions and efforts to improve nature-relatedness are crucial for restoring symbiosis, balance, and mutualism in every sense, recognizing that both personal lifestyle choices and collective structural actions are needed in tandem. Ultimately, meaningful ecological approaches will depend on placing greater emphasis on psychological and cultural dimensions such as mindfulness, values, and moral wisdom to ensure a sustainable and resilient future.


Asunto(s)
Ecosistema , Ambiente , Humanos
10.
Biodivers Conserv ; 31(2): 613-627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529023

RESUMEN

A natural laboratory is a place supporting the conditions for hypothesis testing under non-anthropogenic settings. Located at the southern end of the Magellanic sub-Antarctic ecoregion in southwestern South America, the Cape Horn Biosphere Reserve (CHBR) has one of the most extreme rainfall gradients in the world. Subject to oceanic climate conditions, it is also characterized by moderate thermal fluctuations throughout the year. This makes it a unique natural laboratory for studying the effects of extreme rainfall variations on forest bird communities. Here, we monitor the bird species richness in the different forest types present in the CHBR. We found that species richness decreased with increasing precipitation, in which an increase of 100 mm in average annual precipitation showed about 1% decrease in species richness. Similar patterns were found among different forest types within the CHBR. These results provide a baseline to investigate the interactions between physical and biotic factors in a subpolar region that climatically contrasts with boreal forests, which is subject to continental climatic conditions. This research highlights the importance of ecological and ornithological long-term studies in the CHBR, which can contribute both to a higher resolution of the heterogeneity of climate changes in different regions of the world, and to orient conservation policies in the Magellanic sub-Antarctic ecoregion in the face of growing development pressures.

11.
PeerJ ; 8: e9892, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005489

RESUMEN

BACKGROUND: Birds can maximize their reproductive success through careful selection of nest-sites. The 'total-foliage' hypothesis predicts that nests concealed in vegetation should have higher survival. We propose an additional hypothesis, the 'predator proximity' hypothesis, which states that nests placed farther from predators would have higher survival. We examined these hypotheses in the world's southernmost forests of Navarino Island, in the Cape Horn Biosphere reserve, Chile (55°S). This island has been free of mammalian ground predators until recently, and forest passerines have been subject to depredation only by diurnal and nocturnal raptors. METHODS: During three breeding seasons (2014-2017), we monitored 104 nests for the five most abundant open-cup forest-dwelling passerines (Elaenia albiceps, Zonotrichia capensis, Phrygilus patagonicus, Turdus falcklandii, and Anairetes parulus). We identified nest predators using camera traps and assessed whether habitat characteristics affected nest-site selection and survival. RESULTS: Nest predation was the main cause of nest failure (71% of failed nests). Milvago chimango was the most common predator, depredating 13 (87%) of the 15 nests where we could identify a predator. By contrast, the recently introduced mammal Neovison vison, the only ground predator, depredated one nest (7%). Species selected nest-sites with more understory cover and taller understory, which according to the total-foliage hypothesis would provide more concealment against both avian and mammal predators. However, these variables negatively influenced nest survival. The apparent disconnect between selecting nest-sites to avoid predation and the actual risk of predation could be due to recent changes in the predator assemblage driven by an increased abundance of native M. chimango associated with urban development, and/or the introduction of exotic mammalian ground predators to this island. These predator assemblage changes could have resulted in an ecological trap. Further research will be needed to assess hypotheses that could explain this mismatch between nest-site selection and nest survival.

12.
Sci Rep ; 10(1): 9409, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523081

RESUMEN

Understanding the population genetic consequences of habitat heterogeneity requires assessing whether patterns of gene flow correspond to landscape configuration. Studies of the genetic structure of populations are still scarce for Neotropical forest birds. We assessed range-wide genetic structure and contemporary gene flow in the thorn-tailed rayadito (Aphrastura spinicauda), a passerine bird inhabiting the temperate forests of South America. We used 12 microsatellite loci to genotype 582 individuals from eight localities across a large latitudinal range (30°S-56°S). Using population structure metrics, multivariate analyses, clustering algorithms, and Bayesian methods, we found evidence for moderately low regional genetic structure and reduced gene flow towards the range margins. Genetic differentiation increased with geographic distance, particularly in the southern part of the species' distribution where forests are continuously distributed. Populations in the north seem to experience limited gene flow likely due to forest discontinuity, and may comprise a demographically independent unit. The southernmost population, on the other hand, is genetically depauperate and different from all other populations. Different analytical approaches support the presence of three to five genetic clusters. We hypothesize that the genetic structure of the species follows a hierarchical clustered pattern.


Asunto(s)
Flujo Génico/genética , Passeriformes/genética , Animales , Teorema de Bayes , Análisis por Conglomerados , Ecosistema , Bosques , Variación Genética/genética , Genética de Población/métodos , Genotipo , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ADN/métodos , América del Sur
13.
Sci Rep ; 10(1): 9087, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493944

RESUMEN

Parts of Antarctica were amongst the most rapidly changing regions of the planet during the second half of the Twentieth Century. Even so, today, most of Antarctica remains in the grip of continental ice sheets, with only about 0.2% of its overall area being ice-free. The continent's terrestrial fauna consists only of invertebrates, with just two native species of insects, the chironomid midges Parochlus steinenii and Belgica antarctica. We integrate ecophysiological information with the development of new high-resolution climatic layers for Antarctica, to better understand how the distribution of P. steinenii may respond to change over the next century under different IPCC climate change scenarios. We conclude that the species has the potential to expand its distribution to include parts of the west and east coasts of the Antarctic Peninsula and even coastal ice-free areas in parts of continental Antarctica. We propose P. steinenii as an effective native sentinel and indicator species of climate change in the Antarctic.

14.
Int J Parasitol Parasites Wildl ; 11: 1-11, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31879589

RESUMEN

Latitudinal gradients are well-suited systems that may be helpful explaining distribution of haemosporidian parasites and host susceptibility. We studied the prevalence, diversity and drivers of haemosporidian parasites (Leucocytozoon, Plasmodium and Haemoproteus) along a latitudinal gradient (30°-56° S), that encompass the total distribution (~3,000 km) of the Thorn-tailed Rayadito (Aphrastura spinicauda) in the South American temperate forests from Chile. We analyzed 516 individuals from 18 localities between 2010 and 2017 and observed an overall prevalence of 28.3% for haemosporidian parasites. Leucocytozoon was the most prevalent parasite (25.8%). We recorded 19 distinct lineages (13 for Leucocytozoon, five for Plasmodium, and one for Haemoproteus). Differences in haemosporidian prevalence and diversity by genus and type of habitat were observed in the latitudinal gradient. Further, we support the existence of a latitudinal associate distribution of Leucocytozoids in South America, where prevalence and diversity increase toward higher latitudes. Distribution of Leucocytozoon was associated with sub-antarctic habitat (higher latitude) and explained by cold temperature and high precipitation. On the other hand, we lacked to find a latitudinal associate pattern for Plasmodium and Haemoproteus, however low prevalence and high diversity were recorded in areas considered as a hotspot of biodiversity in Central Chile. Our findings confirmed the importance of habitat and climatic variables explaining prevalence, diversity and distribution of haemosporidian parasites in a huge latitudinal gradient, belonging the distribution of the Thorn-tailed Rayadito in the world's southernmost forests ecosystems.

15.
PeerJ ; 7: e7128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31392086

RESUMEN

BACKGROUND: The study of altitudinal gradients provides insights about species diversity, distribution patterns and related drivers. The Magellanic sub-Antarctic ecoregion has a steep elevational gradient, peaking at around 1,000 m a.s.l., and marked changes in temperature and landscape composition can be observed over relatively short distances. METHODS: This study assessed freshwater macroinvertebrate diversity associated with lakes and ponds along the altitudinal gradient of a Magellanic sub-Antarctic watershed. RESULTS: A monotonic decline in species richness was observed with increasing elevation, with simpler and more even community composition at higher altitude. This pattern differs from the mid-peak trend found in streams of the same watershed. Functional feeding group structure also diminished with increasing elevation. DISCUSSION: The study provides a descriptive baseline of macroinvertebrate community structure associated with lentic freshwater ecosystems in the Magellanic sub-Antarctic ecoregion, and confirms that elevation has substantial effects on community structure, function and environmental features, even in these relatively low elevation mountain ranges. The harsh environmental conditions of this ecoregion increase freshwater macroinvertebrate development time, as well as decreasing habitat availability and food supply, supporting simple but well adapted communities. In conjunction with previous research, this study provides a watershed-scale platform of information underpinning future long-term research in the region.

16.
New Phytol ; 223(2): 661-674, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951191

RESUMEN

Chronosequences at the forefront of retreating glaciers provide information about colonization rates of bare surfaces. In the northern hemisphere, forest development can take centuries, with rates often limited by low nutrient availability. By contrast, in front of the retreating Pia Glacier (Tierra del Fuego, Chile), a Nothofagus forest is in place after only 34 yr of development, while total soil nitrogen (N) increased from near zero to 1.5%, suggesting a strong input of this nutrient. We measured N-fixation rates, carbon fluxes, leaf N and phosphorus contents and leaf δ15 N in the dominant plants, including the herb Gunnera magellanica, which is endosymbiotically associated with a cyanobacterium, in order to investigate the role of N-fixing and mycorrhizal symbionts in N-budgets during successional transition. G. magellanica presented some of the highest nitrogenase activities yet reported (potential maximal contribution of 300 kg N ha-1  yr-1 ). Foliar δ15 N results support the framework of a highly efficient N-uptake and transfer system based on mycorrhizas, with c. 80% of N taken up by the mycorrhizas potentially transferred to the host plant. Our results suggest the symbiosis of G. magellanica with cyanobacteria, and trees and shrubs with mycorrhizas, to be the key processes driving this rapid succession.


Asunto(s)
Micorrizas/metabolismo , Nitrógeno/metabolismo , Tracheophyta/metabolismo , Tracheophyta/microbiología , Regiones Antárticas , Ciclo del Carbono , Chile , Marcaje Isotópico , Fijación del Nitrógeno , Fósforo/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Suelo
17.
PLoS One ; 13(4): e0194745, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29617392

RESUMEN

The success of an invasive species depends in part on its niche and the new niche opportunities that such species may find in the invaded habitat. Niche opportunities can be understood as the potential provided by a community to an invasive species to expand its niche by changes in habitat use, behavior, or diet, that favors population growth, reflected in the species occupying more habitat. This may occur under a favorable combination of access to resources that can be further favored by a lack of competitors and a release from natural enemies. The American mink (Neovison vison) is a crepuscular/nocturnal and semi-aquatic mustelid native to North America that generally concentrates activities at <100 m from the water. It has recently established an invasive population on Navarino Island in southern Chile. Here, the mink is now the top terrestrial predator free of predators or competitors. We hypothesized that this lack of potential predators and competitors, together with a more diurnal and terrestrial prey, have resulted in the mink expanding its spatial and temporal niche on Navarino Island as compared to that in its native habitats, expressed in occupancy of sites away from water and diurnal activity. We evaluated this by using 93 randomly-chosen camera-trap stations, occupancy models and mink daily activity patterns. Models showed a dynamic occupancy with the area occupied by mink being highest during summers and lowest in spring with seasonal changes in occupancy related to distance to water sources. Mink occupied and were active at sites up to 880 m from water sources during summers. Occupancy decreased at shorter distances from water during spring, but mink were still active at up to 300 m from water. Mink were active daylong during summers, and nocturnal and crepuscular during winter and spring. These results show that compared to the native and other invaded habitats, on Navarino Island mink use more terrestrial habitats and are more diurnal during summers, suggesting a niche expansion under new niche opportunities that may enhance the negative impacts of this predator on a myriad of small native vertebrates.


Asunto(s)
Mamíferos/fisiología , Visón/fisiología , Conducta Predatoria/fisiología , Animales , Ecosistema , Especies Introducidas , Estaciones del Año
18.
AoB Plants ; 9(6): plx053, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29225764

RESUMEN

The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if. high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg-1, about 20 times greater than measured in other higher plants in the community (0.29 g kg-1). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla, a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera. Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg-1) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear.

20.
Mol Phylogenet Evol ; 96: 195-199, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724407

RESUMEN

Bryophytes (mosses, liverworts, and hornworts) are diverse and ecologically and evolutionarily significant yet genome scale data sets and analyses remain extremely sparse relative to other groups of plants, and are completely lacking at the infraspecific level. By sequencing the complete organellar genomes and nuclear ribosomal repeat from seven patches of a South American sub-Antarctic neo-endemic non-model moss, we present the first characterization of infraspecific polymorphism within and across the three genomic compartments for a bryophyte. Diversity within patches is accounted for by both intraindividual and interindividual variation for the nuclear ribosomal repeat and plastid genome, respectively. This represents the most extensive infraspecific genomic dataset generated for an early land plant lineage thus far and provides insight into relative rates of substitution between organellar genomes, including high rates of nonsynonymous to synonymous substitutions.


Asunto(s)
Briófitas/citología , Briófitas/genética , Núcleo Celular/genética , ADN Ribosómico/genética , Genoma de Planta/genética , Genómica , Orgánulos/genética , Conjuntos de Datos como Asunto , Evolución Molecular , Genoma de Plastidios/genética , Plastidios/genética , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA